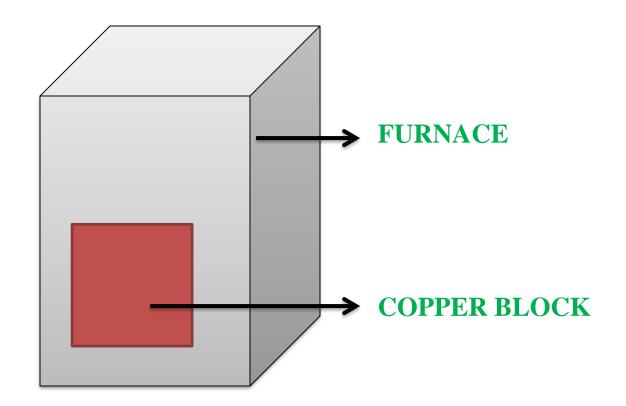
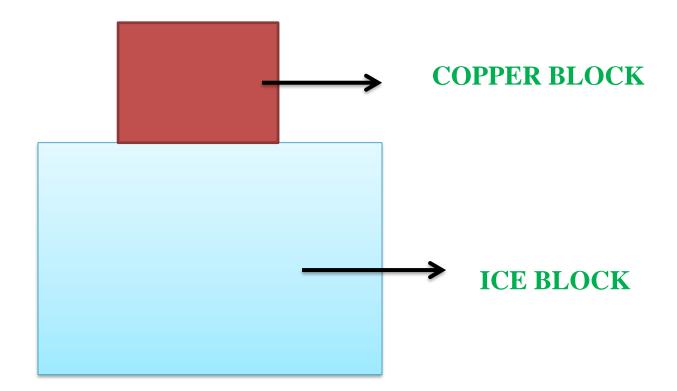
Interesting Heat Exchange


A copper block of mass 2.5 kg is heated in a furnace to a temperature of 500 °C and then placed on a large ice block.

What is the maximum amount of ice that can melt?


(Specific heat of copper = $0.39 Jg^{-1}K^{-1}$; heat of fusion of water = $335 Jg^{-1}$).

Let us imagine

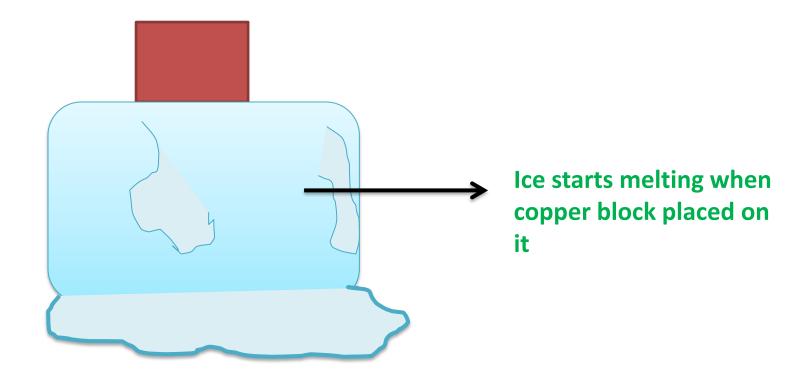
Let us consider a furnace in which copper block of mass 2.5 kg is heated to a temperature of 500 °C.

Now put this copper block on a large ice block as shown in picture.

Let us see what we know : mass of the copper block, $M_1 = 2.5 kg$

- Specific heat of copper (c)= 0.39 J $g^{-1}K^{-1}$ = 0.39 × 10³ J $kg^{-1}K^{-1}$ Temperature of the furnace, θ = 500 °C
- Ice will remain at 0 °C till it melts completely

So the copper block will stop melting ice the moment its temperature becomes 0 °C


Therefore, heat absorbed by the copper block

$Q = M_1 c \Delta T$ = 2.5 × 0.39 × 10³ × (500 - 0)

•

Latent heat of ice, $L = 335 \text{ J } g^{-1} = 335 \times 10^3 J k g^{-1}$

Suppose that mass $M_2(kg)$ of the ice melts, when the copper block is placed on it.

Then

$$Q = M_2 L = M_2 \times 335 \times 10^3$$

From principle of heat exchange Heat lost is equal to heat gained

Provided there is no other system involved No heat lost to surrounding container etc.

Heat gained by block of ice = Heat lost by copper block

Heat gained = Heat lost

 $M_2 \times 335 \times 10^3 = 2.5 \times 0.39 \times 10^3 \times 500$

$$M_2 = \frac{2.5 \times 0.39 \times 10^3 \times 500}{335 \times 10^3}$$

= **1.455** kg

1.455 kg ice will melt

A CIET NCERT PRESENTATION